
Dr. Moustafa Alzantot

Information System Design
Lecture 3:

SOLID principles revised.

What are the SOLID principles ?

SOLID principles revised.

What are the SOLID principles ?

SOLID principles revised.

Quiz: comment about this OO design and improve, if possible.

Open-Closed Principle

•The Open-Closed Principle

Software entities should be open for extension, but closed for modification.

Modules that satisfy (OCP) principle are : 

Open for extension: this means their behavior can be extended. If the requirements of the application
change, we can extend the module with new behaviors to satisfy the requirements change.

Closed for modification: extending the behavior of the module doesn’t result in changes to source
or binary of the module. The binary executable version (e.g. DLL or java JAR) remains unchanged.

Open-Closed Principle

How can a module be both open for extension and closed for modification at the
same time ?

Use abstractions and Polymorphism. Abstractions are abstract base classes and that could
be extended by an unbounded group of possible behaviors through derivative classes.

A module that relies on abstract class is closed for modification because the abstract class
remains unchanged. Yet the behavior can be extended by creating a new derivative of the
abstraction.

Open-Closed Principle

Both Client and Server are concrete classes.

The Client uses Server class, if we wish to change a different server
object, the Client class must be changed.

Source : Agile Software Development, Principles, Patterns and Practices

Open-Closed Principle

Client needs some work to get done, it can describe it in terms of
abstract interface “ClientInterface”.

Sub-types of ClientInterface can implement the interface in any
manner the choose.

Source : Agile Software Development, Principles, Patterns and Practices

SOLID principles revised.

Quiz 2: How can we handle the new requirements of adding
“CreditCard Payment” ?

bool Process(const PaymentInfo& payment_info) {
 If (payment_info.IsCash) {
 // Process cash payment  
 } else {
 // Process cheque payment using checqueNumber  
 }  
}

Liskov Substitution Principle

Liskov Substitution Principle can be phrased as :

Subtypes must be substitutable for their base types.

In other words, 
 if an object inherits from another, it should be able to replace its parent
elements in a program and not have the program break or have to
create exceptions.

Liskov Substitution Principle
Example

IS-A relationship represented by inheritance

Square class inherits from Rectangle class.

Liskov Substitution Principle
Example

Does Square need both height and width ?

The Square invariants remain correct, but what if you pass a Square
object to the following function.

Liskov Substitution Principle
Example

What has gone wrong ?

Liskov Substitution Principle
Example

Program can be fixed by marking SetWidth and SetHeight methods as virtual.

However, if the creation of derived class causes us to make changes in base
class, this is a sign of faulty design.

Another reason this is a bad design: it is fair to assume that changing the
height won’t affect the width.

Therefore the author of Square has violated an invariant of Rectangle, not an
invariant of Square.

Interface Segragation Principle

Interface-Segregation Principle states

Clients should not be forced to depend on methods that they do not
need to use.

Interface Segragation Principle

Example:

Suppose you want to represent a multifunction device that can print,
scan and also fax documents.

You can define an interface for it like that

Interface Segragation Principle

What is the problem with that ?

- If there is some device that implements this interface but wants only
to do scanning but not printing or sending faxes.

Interface Segragation Principle

Better design

Define separate interfaces for each task.

A concrete class will implement only interfaces for tasks it can handle.

A concrete class can implement as many services as it needs.

Dependency Inversion Principle

Dependency Inversion Principle:

High level modules should not depend on low level modules. Both
should depend on abstractions.

Dependency Inversion Principle

Example:

PolicyLayer uses a lower level MehchanismLayer. 
 
MechanismLayer depends on a lower UtilityLayer.

Dependency is transitive, PolicyLayer depends on
changes from both mechanism and utility layers.

Dependency Inversion Principle

Re-design:

•Upper layer define an interface for services they
need.

•Lower layers are realized from these abstract
interfaces.

•Each higher level layer uses next lower layer
through the abstract interface.

Dependency Inversion Principle

Higher layer do not depend on lower layers,
but instead lower layers depend on
abstract services declared in upper layers.

This also breaks the transitive dependency
between “PolicyLayer” and
“UtilityLayer”.

Dependency Inversion Principle

Pros of DIP redesign:
- Higher level (PolicyLayer) module is
unaffected by changes in MechanismLayer or
UtilityLayer.

- PolicyLayer can be reused in any context that
defines low-level modules that conform to
PolicyServiceInterface. Therefore, the
structure is more flexible.

Dependency Inversion Principle

Button object senses external environment.

•On receiving Poll message, it determines whether or not the user has
pressed it.

The Lamp object affects external environment

• On Receiving “TurnOn” message, it illuminates light.

• On Receiving “TurnOff”, it extinguishes light.

Dependency Inversion Principle
Example

What is bad about this design?

Button depends directly on Lamp class.

This implies that changes in Lamp will affect Button class.

We can’t reuse the Button to control other classes (e.g. Motor class)

This solution violates DIP

Dependency Inversion Principle
Example

Button now has an association called
“ButtonServer”.

ButtonServer provides abstract methods that
Button can use to turn Something on or off.

Lamp implements ButtonServer.

Future devices, e.g. Motor, can also implement
this abstract interface.

Dependency Inversion Principle
Example

Question: 
 
 Does Lamp depend on Button ? 
 
Answer

- Not really, Lamp depends on ButtonServer
and does not depend on Button.

- We can keep Button and ButtonServer in
separate libraries, and possibly rename
ButtonServer as something else (e.g.
SwitchableDevice).

Dependency Inversion Principle
Example

Dependency Inversion Principle

